Cognome	Nome	Matricola
0 0 9 7 6 0 7 7 6 0	1 1 01/00	111 001 000000

06.02.2020

Teoria delle Vibrazioni

Si consideri il sistema meccanico rappresentato in Figura 1. Nell'ipotesi che non vi sia strisciamento fra i corpi in movimento, si chiede di:

- 1. scrivere l'equazione di moto del sistema con il metodo di Lagrange, utilizzando come coordinata libera la traslazione x della slitta:
- 2. calcolare la frequenza propria non smorzata del sistema;
- 3. calcolare la costante c dello smorzatore in modo che il sistema abbia un fattore di smorzamento $\xi = 40\%$;
- 4. utilizzando le condizioni iniziali sotto indicate e supponendo nulla la forza esterna F(t) calcolare il movimento della slitta in funzione del tempo e darne una rappresentazione grafica qualitativa;
- 5. determinare ampiezza e fase nel moto a regime della slitta quando viene applicata la forza $F(t) = F_{max} \sin \Omega t$;
- 6. supponendo che lo smorzatore venga scollegato, calcolare nuovamente l'ampiezza di vibrazione nel moto forzato a regime con forzante sinusoidale;
- 7. operando sempre in assenza di smorzamento e supponendo che la forza esterna applicata alla slitta subisca una variazione a gradino (da zero al valore F_{max}), calcolare il moto della slitta, supponendo nulle le condizioni iniziali.

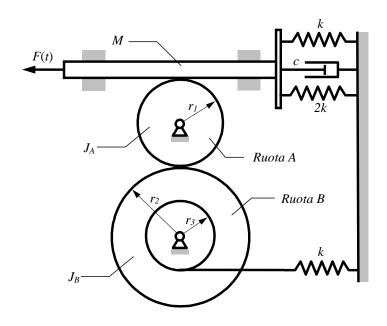


Figura 1

Dati

\bullet Massa della slitta
\bullet Momenti d'inerzia
• Raggi $r_1 = 150 \text{ mm} \dots r_2 = 280 \text{ mm} \dots r_3 = 120 \text{ mm}$
• Condizioni iniziali (da utilizzare solo per la domanda 4)
\bullet Valore massimo della forza applicata $F_{max}=200$ N
• Pulsazione della forza applicata