Coc	nome	Nome	Matricola
-	116O116C	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1V1 WUI UCOUW

Meccanica delle Vibrazioni (9 CFU) - Prova pratica in aula - 03.07.2018

Test n.1

Si consideri il sistema vibrante rappresentato in Fig. 1 e si risponda alle seguenti domande:

- 1. scrivere l'equazione di moto, utilizzando come coordinata la traslazione della slitta;
- 2. calcolare la rigidezza k in modo che la frequenza propria del sistema sia pari a 4 Hz;
- 3. calcolare la costante c dello smorzatore collegato alla slitta in modo che il fattore di smorzamento del sistema sia pari al 40%;
- 4. calcolare ampiezza e fase del moto a regime quando la manovella ruota con velocità angolare $\Omega = 50 \text{ rad/s}$.

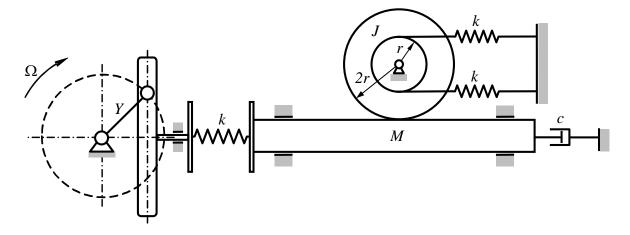


Figura 1

Dati

•	Massa della slitta
•	Momento d'inerzia totale del corpo rotante
•	Raggio
•	Lunghezza della manovella

Per il sistema in Fig. 2, supponendo che l'asta compia piccole oscillazioni attorno alla posizione verticale di equilibrio e che il disco rotoli senza strisciare sul piano sottostante, si chiede di:

- 1. scrivere l'equazione di moto utilizzando come coordinata la rotazione dell'asta;
- 2. calcolare la pulsazione propria (con smorzatore scollegato);
- 3. calcolare il fattore di smorzamento e la pulsazione propria smorzata;
- 4. studiare le vibrazioni libere quando si assegna all'asta una rotazione iniziale di 8 gradi in senso orario (si consideri velocità iniziale nulla);
- 5. calcolare la posizione dell'asta dopo 1 secondo dall'istante iniziale.

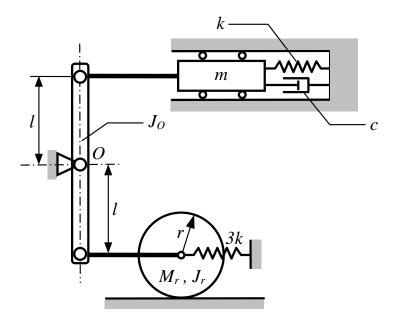
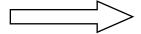



Figura 2

• Massa del carrello	$m = 10 \text{ kg}$
• Massa del rullo	$M_r = 15 \text{ kg}$
• Momento d'inerzia baricentrico del rullo	$\dots J_r = 0.04 \text{ kg m}^2$
Momento d'inerzia baricentrico dell'asta	$\dots J_O = 0.06 \text{ kg m}^2$
• Semi-lunghezza dell'asta	$l = 150 \text{ mm}$
• Raggio del rullo	r = 70 mm
• Rigidezza	$k = 7500 \text{ N/m}$
• Costante di smorzamento	$c = 160 \text{ Ns/m}$

Seguono altre domande sul retro del foglio

Per il sistema meccanico rappresentato in Fig. 3, nell'ipotesi che l'asta compia piccole oscillazioni attorno alla posizione verticale di equilibrio, si chiede di:

- 1. scrivere le equazioni di moto utilizzando come coordinate gli spostamenti del pistone e della slitta;
- 2. calcolare la legge di moto del pistone e della slitta in condizioni di regime quando la pressione nel cilindro varia con legge sinusoidale $p(t) = p_{max} \sin \Omega t$.

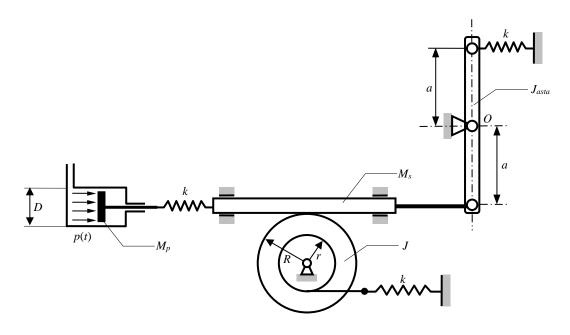


Figura 3

Dati

Massa del pistone	$M_p = 5 \text{ kg}$
• Massa della slitta	$M_s = 20 \text{ kg}$
\bullet Momento d'inerzia della coppia di ruote coassiali	$=0.75~\rm kgm^2$
ullet Momento d'inerzia baricentrico dell'asta	$=0.5\;\mathrm{kg}\mathrm{m}^2$
• Rigidezza delle molle	c = 12 kN/m
• Lunghezza dei bracci della leva	a = 390 mm
• Raggio delle ruote	R = 270 mm
• Diametro del cilindro	D = 140 mm
ullet Pressione massima nel cilindro	= 20000 Pa
• Pulsazione della pressione nel cilindro	$\Omega = 12 \text{ rad/s}$

Nota: Si supponga che le ruote del carrello rotolino senza strisciare sul terreno.

Per il sistema meccanico rappresentato in Fig. 4, nell'ipotesi che non vi siano strisciamenti fra i corpi al contatto e fra il rullo ed il terreno, si chiede di:

- 1. scrivere le equazioni di moto utilizzando come coordinata lo spostamento della slitta e lo spostamento del baricentro del rullo;
- 2. calcolare la matrice di stato.

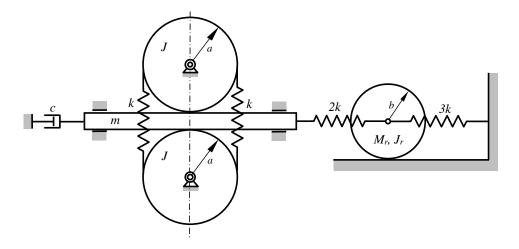


Figura 4

Dati

Massa della slitta	$\dots m = 7 \text{ kg}$
• Momento d'inerzia dei corpi rotanti a contatto con la slitta	$I = 0.06 \text{ kg m}^2$
Massa delrullo	$M_r = 12 \text{ kg}$
\bullet Momento d'inerzia baricentrico del rullo	$_{r} = 0.09 \text{ kg m}^{2}$
• Rigidezza	k = 100 N/m
• Raggi	$b=0.12\;\mathrm{m}$
• Costante di smorzamento	c = 30 Ns/m

Test n.5

Si considerino le vibrazioni flessionali della trave a mensola omogenea rappresentata in Fig. 5. La sezione trasversale della trave ha area A_s e momento d'inerzia J rispetto all'asse neutro della flessione. La trave ha lunghezza L ed il materiale utilizzato per costruirla ha densità ϱ e modulo di Young E.

Domande

- 1. indicare le condizioni al contorno;
- 2. ricavare l'equazione delle frequenze.

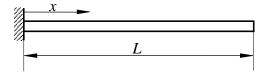


Figura 5