Coc	nome	Nome	Matricola
-	116O116C	1 V 0/16C	1V1 WUI UCOUW

Meccanica delle Vibrazioni (9 CFU) - Prova pratica in aula - 15.06.2018

Test n.1

Si considerino le vibrazioni del sistema in Fig. 1 e si risponda alle seguenti domande:

- 1. scrivere l'equazione di moto, utilizzando il metodo di Lagrange e adottando come coordinata la traslazione del carrello;
- 2. calcolare la pulsazione propria in assenza di smorzamento;
- 3. determinare la costante c dello smorzatore in modo che il sistema operi in condizione di smorzamento critico;
- 4. calcolare il moto del carrello in condizioni di regime (determinandone ampiezza e fase) quando la pressione nel cilindro varia con legge sinusoidale $p(t) = p_{max} \sin \Omega t$.

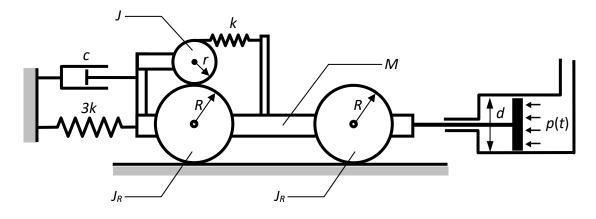


Figura 1

Dati

\bullet Massa traslante complessiva (ruote comprese)
\bullet Momento d'inerzia delle ruote del carrello
\bullet Momento d'inerzia della ruota interna
• Raggio delle ruote del carrello
• Rigidezza
ullet Pressione massima nel cilindro
\bullet Diametro del cilindro
ullet Pulsazione della pressione

Nota: Si ipotizzi assenza di strisciamento fra le ruote ed il terreno e fra la ruota interna e la ruota anteriore del carrello.

Per il sistema in Fig. 2 si chiede di:

- 1. scrivere l'equazione di moto con il metodo degli equilibri dinamici ed utilizzando come coordinata la traslazione del carrello;
- 2. calcolare la massa m del carrello in modo che la frequenza propria del sistema sia pari a 5 Hz;
- 3. calcolare la costante di smorzamento c in modo che il fattore di smorzamento sia pari al 30%;
- 4. calcolare il moto del carrello quando vengono imposte le condizioni iniziali sotto riportate;
- 5. calcolare la posizione del carrello all'istante di tempo $t=0.25~\mathrm{s}$
- 6. rappresentare qualitativamente l'andamento temporale delle vibrazioni del carrello.

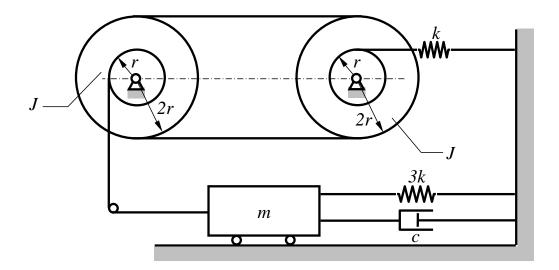


Figura 2

Momenti d'inerzia dei corpi rotanti	$J = 0.15 \text{ kg m}^2$
• Raggio	$\dots r = 200 \text{ mm}$
• Rigidezza	. $k = 5000 \text{ N/m}$
- Condizioni iniziali	$\dot{x}(0) = 1 \text{ m/s}$

Seguono altre domande sul retro del foglio

Si considerino le vibrazioni flessionali dell'albero in acciaio rappresentato in Fig. 3 e si risponda alle seguenti domande:

- 1. scrivere le condizioni al contorno;
- 2. ricavare l'equazione delle frequenze.
- 3. calcolare la lunghezza L dell'albero in modo che la prima frequenza propria risulti uguale a 15 Hz.
- 4. rappresentare le deformate modali dei primi tre modi principali di vibrare dell'albero.

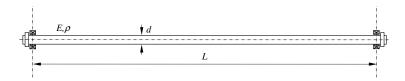


Figura 3

Dati

Test n.4

Per il sistema meccanico rappresentato in Fig. 4, nell'ipotesi che non vi sia strisciamento fra i corpi a contatto, si chiede di:

- 1. scrivere le equazioni di moto utilizzando come coordinate gli angoli di rotazione dei dischi;
- 2. calcolare il movimento in condizioni di regime quando l'estremità destra della molla di rigidezza 2k subisce uno spostamento $y(t) = Y \sin \Omega t$.

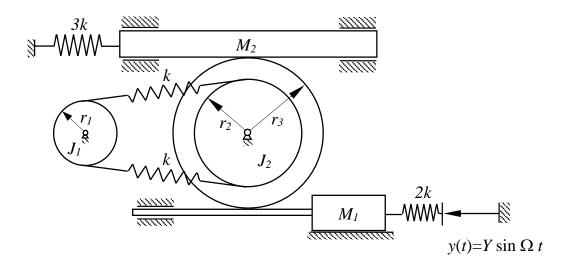


Figura 4

Dati

Masse traslanti	$M_1 = 10 \text{ kg}$ $M_2 =$	= 30 kg
Momenti d'inerzia dei dischi	$J_1 = 0.04 \text{ kg m}^2$ $J_2 = 0.25$	$6~{ m kg}{ m m}^2$
• Rigidezza	$\dots \dots $	kN/m
• Raggi	$r_1 = 50 \text{ mm}$ $r_2 = 90 \text{ mm}$ $r_3 = 1$	30 mm
Ampiezza dello spostamento imposto	$\dots \dots Y =$	40 mm
Pulsazione dello spostamento imposto	$\Omega = 10$) rad/s

Per il sistema meccanico rappresentato in Fig. 5, nell'ipotesi che l'asta compia piccole oscillazioni attorno alla posizione verticale di equilibrio e che il disco rotoli senza strisciare sul piano sottostante, si chiede di:

- 1. calcolare la rigidezza equivalente delle due molle in serie;
- 2. scrivere le equazioni di moto con il metodo degli equilibri dinamici, utilizzando come coordinate la traslazione della massa m e la traslazione del baricentro del rullo;
- 3. calcolare le pulsazioni proprie e i vettori modali.

Nota: Si supponga che la massa della bielletta che collega la leva al carrello sia trascurabile.

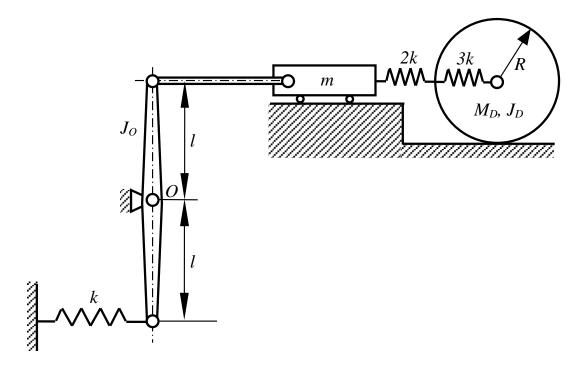


Figura 5

Dati

• Massa traslante	20 kg
ullet Massa del disco	30 kg
\bullet Momento d'inerzia baricentrico del disco	${ m kgm^2}$
\bullet Momento d'inerzia baricentrico dell'asta oscillante	$ m kgm^2$
	N/m
	0 mm
\bullet Semi-lunghezza dell'asta oscillante	0 mm