CognomeNome	$Matricola$
-------------	-------------

Elementi di Meccanica delle Vibrazioni (6 CFU) - Prova pratica in aula - 12.09.2018

Test n.1

Per il sistema vibrante rappresentato in Figura 1, nell'ipotesi che l'asta oscilli nel piano verticale, si chiede di:

- 1. scrivere l'equazione di moto utilizzando il metodo degli equilibri dinamici;
- 2. verificare che l'equazione ottenuta al punto precedente può essere ottenuta anche con il metodo di Lagrange;
- 3. calcolare la costante di smorzamento c, in modo che il fattore adimensionale di smorzamento del sistema sia $\xi = 0.25$;
- 4. calcolare la legge di moto dell'asta in funzione del tempo, supponendo che, all'istante iniziale t = 0, l'asta sia ferma e ruotata di 15° in senso orario rispetto alla verticale;
- 5. utilizzando il concetto di decremento logaritmico, calcolare l'ampiezza di oscillazione dopo 2 cicli completi a partire dall'istante iniziale.

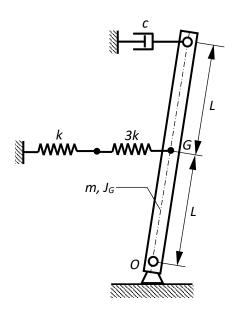


Figura 1

Dati

•	Massa dell'asta	$\dots m = 8 \text{ kg}$
•	Momento d'inerzia baricentrico dell'asta	$J_G = 1.3 \text{ kg m}^2$
•	Rigidezza	. $k = 1600 \text{ N/m}$
•	Semi lunghezza dell'asta	$\dots L = 700 \text{ mm}$

Si consideri il sistema in Figura 2 e si risponda alle seguenti domande:

- 1. scrivere l'equazione di moto ipotizzando assenza di strisciamento fra i corpi a contatto (si utilizzi come coordinata lo spostamento della slitta);
- 2. supponendo che la manovella ruoti a velocità costante, calcolare la legge di moto della slitta in condizioni di regime (determinare ampiezza e fase).

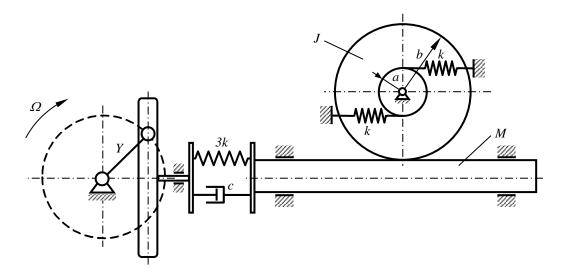
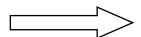



Figura 2

Dati

• Massa della slitta	$M=50 \mathrm{kg}$
	9
• Momento d'inerzia baricentrico del corpo rotante	$\dots \dots J = 0.4 \text{ kg m}^2$
• Rigidezza	$\dots \dots k = 2000 \text{ N/m}$
• Costante di smorzamento	$\dots \dots c = 70 \text{ Ns/m}$
• Raggi	$\dots \dots a = 60 \text{ mm}$ $b = 180 \text{ mm}$
• Lunghezza della manovella	Y = 170 mm
• Velocità angolare della manovella	$\Omega = 40 \text{ rad/s}$

Seguono altre domande sul retro del foglio

Per il sistema rappresentato in Figura 3, nell'ipotesi che il pignone e la ruota conica abbiano momento d'inerzia trascurabile, si chiede di:

- 1. scrivere le equazioni di moto utilizzando le coordinate angolari α e γ ;
- 2. calcolare il valore del momento d'inerzia J per cui la pulsazione non nulla del sistema risulta uguale a $10~{\rm Hz}$.

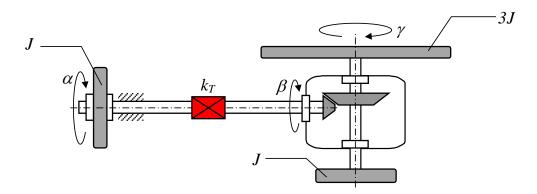


Figura 3

Dati

Test n.4

Per il sistema vibrante rappresentato in Figura 4, si chiede di:

- 1. scrivere le equazioni di moto, supponendo che l'asta compia piccole oscillazioni;
- 2. determinare la matrice di stato.

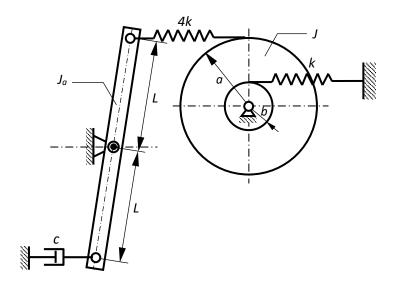


Figura 4

Dati

ullet Momento d'inerzia baricentrico dell'asta	$a = 0.35 \text{ kg m}^2$
• Momento d'inerzia baricentrico del corpo rotante	$J=0.7\;\mathrm{kg}\mathrm{m}^2$
• Rigidezza	k = 1000 N/m
• Costante di smorzamento	. $c = 15 \text{ Ns/m}$
• Raggi	b = 80 mm
• Semi-lunghezza dell'asta	. $L=380~\mathrm{mm}$

Test n.5

Per il sistema meccanico rappresentato in Figura 5, nell'ipotesi che l'asta compia piccole oscillazioni attorno alla posizione verticale di equilibrio e che non vi siano slittamenti fra i corpi a contatto, si chiede di:

- 1. scrivere le equazioni di moto utilizzando come coordinate gli spostamenti del pistone e del carrello;
- 2. calcolare le ampiezze di oscillazione del carrello e della slitta in condizioni di regime, supponendo che la pressione nel cilindro vari con legge sinusoidale $p(t) = p_{max} \sin \Omega t$.

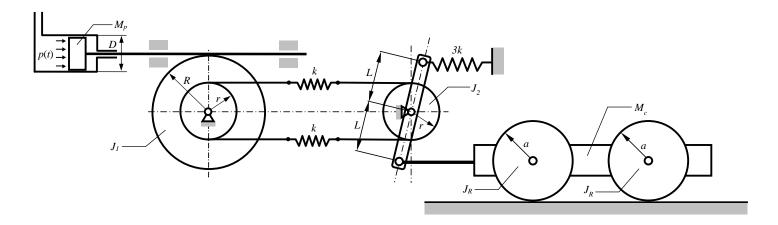


Figura 5

Dati

• Massa del pistone (asta compresa)	$\dots M_p = 3 \text{ kg}$
• Massa del carrello (ruote comprese)	$M_c = 50 \text{ kg}$
• Momento d'inerzia dei due dischi coassiali (a sinistra)	$J_1 = 0.27 \text{ kg m}^2$
• Momento d'inerzia del gruppo puleggia-asta (a destra)	$J_2 = 0.04 \text{ kg m}^2$
• Momento d'inerzia delle ruote del carrello	$J_R = 0.07 \text{ kg m}^2$
• Rigidezza	$\dots \dots k = 12 \text{ kN/m}$
• Raggi dei dischi coassiali	$\dots \dots r = 90 \text{ mm} \qquad R = 180 \text{ mm}$
• Semi-lunghezza dell'asta oscillante	$\dots \dots L = 170 \text{ mm}$
• Raggio delle ruote del carrello	$\dots \dots a = 130 \text{ mm}$
• Pressione massima nel cilindro	$\dots p_{max} = 50 \text{ kPa}$
• Diametro del cilindro	$\dots \dots D = 120 \text{ mm}$
Pulsazione della pressione	$\Omega = 8 \text{ rad/s}$