Cognome	Nome	Matricola

Elementi di Meccanica delle Vibrazioni (6 CFU) - Prova pratica in aula - 01.09.2017

Test n.1

Per il sistema in Fig. 1, nell'ipotesi che non vi sia strisciamento nel punto di contatto tra la slitta e i corpi rotanti, si chiede di:

- 1. calcolare la rigidezza equivalente della combinazione di molle evidenziata nel rettangolo tratteggiato;
- 2. scrivere l'equazione di moto utilizzando come coordinata la traslazione x della slitta;
- 3. determinare il valore della massa m in modo che la frequenza propria non smorzata del sistema risulti pari a $5~{\rm Hz}$;
- 4. calcolare il valore della costante c che genera un fattore di smorzamento $\xi = 40\%$;
- 5. utilizzando le condizioni iniziali sotto indicate, calcolare lo spostamento della slitta all'istante $\bar{t} = 1.2 T_s$, dove T_s indica il periodo proprio smorzato del sistema;
- 6. tracciare un grafico qualitativo che mostri l'andamento temporale delle oscillazioni della slitta.

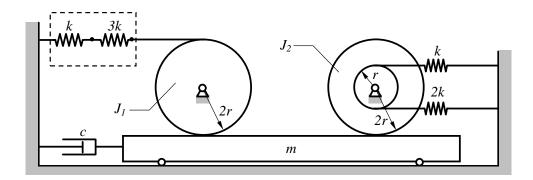


Figura 1

Dati

\bullet Momenti d'inerzia baricentrici dei corpi rotanti	$J_2 = 1.5 \text{ kg m}^2$
• Rigidezza	$\dots k = 27 \text{ kN/m}$
• Raggio	$\dots r = 250 \text{ mm}$
- Condizioni iniziali	$\dot{x}(0) = 2 \text{ m/s}$

Per il sistema in Fig. 2, nell'ipotesi che non vi siano strisciamenti fra i corpi a contatto, si chiede di:

- 1. scrivere l'equazione di moto, utilizzando come coordinata la traslazione x delle due slitte;
- 2. calcolare l'ampiezza di oscillazione delle slitte, in condizioni di regime, quando la pressione nel cilindro varia con legge sinusoidale alla frequenza di 4 Hz;
- 3. ricalcolare l'ampiezza di oscillazione delle slitte (sempre in condizioni di regime e alla stessa frequenza) quando lo smorzatore viene scollegato.

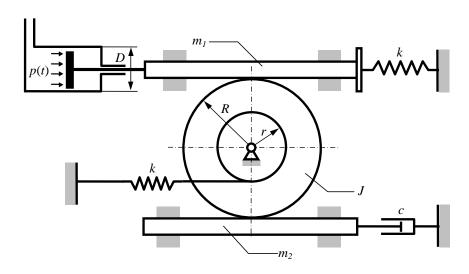
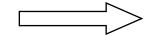



Figura 2

Dati

• Masse traslanti	$g m_2 = 10 \text{ kg}$
• Momento d'inerzia del corpo rotante	$\dots J = 0.2 \; \mathrm{kg} \mathrm{m}^2$
• Rigidezza	$\dots k = 8500 \text{ N/m}$
• Costante di smorzamento	$\dots c = 300 \text{ Ns/m}$
• Raggi $r = 100 \text{ mm}$	R = 200 mm
• Valore massimo della pressione nel cilindro	$\dots p_{max} = 80 \text{ kPa}$
• Diametro del cilindro	$\dots D = 120 \text{ mm}$

Seguono altre domande sul retro del foglio

Per il sistema in Fig. 3, nell'ipotesi che l'albero e la barra possano deformarsi a torsione, si calcolino le pulsazioni proprie e la matrice modale.

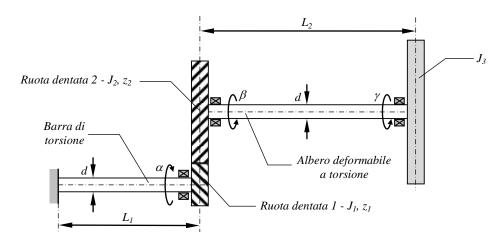


Figura 3

Dati

\bullet Momenti d'inerzia dei corpi rotanti	$J_2=0.1~\rm kgm^2$	$J_3 = 0.25 \text{ kg m}^2$
• Numero di denti delle ruote dentate		$= 25$ $z_2 = 75$
• Lunghezze della barra e dell'albero	$\dots L_1 = 300 \text{ mm}$	$L_2 = 450 \text{ mm}$
• Diametro della barra e dell'albero		$\dots d = 22 \text{ mm}$
• Modulo di elasticità tangenziale del materiale costituente l'albero e la b	arra	G = 80000 MPa

Nota: Si ricordi che la rigidezza torsionale k_T di un albero di diametro d e lunghezza L, realizzato con materiale avente modulo di elasticità tangenziale G, si calcola con la seguente relazione:

$$k_T = \frac{G\pi d^4}{32L}$$

Per il sistema meccanico rappresentato in Figura 4, nell'ipotesi che il disco rotoli senza strisciare, si chiede di:

- 1. scrivere la relazione cinematica che esprime lo spostamento assoluto del baricentro G del rullo in funzione della traslazione x del carrello e della rotazione θ del rullo medesimo;
- 2. calcolare l'energia cinetica e l'energia potenziale di tutto il sistema vibrante;
- 3. ricavare le matrici di massa e di rigidezza;
- 4. calcolare le ampiezze di oscillazione X del carrello e Θ del rullo quando la manovella ruota alla velocità costante di 100 giri/min (si supponga il sistema a regime).

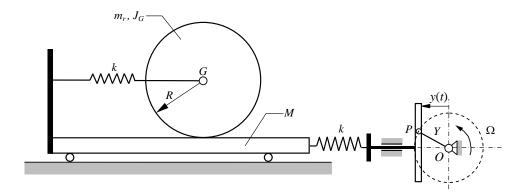


Figura 4

Dati

ullet Massa del carrello
• Massa del rullo
ullet Momento d'inerzia baricentrico del rullo
• Raggio $R = 160 \text{ mm}$
• Lunghezza della manovella

Test n.5

Si analizzino le vibrazioni libere dell'oscillatore smorzato rappresentato in Figura 5 e si indichi il procedimento di calcolo della legge di moto x(t) per differenti condizioni di smorzamento (sottosmorzato, sovrasmorzato e critico).

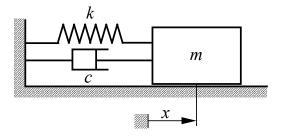


Figura 5