Cognome	Nome	Matricola
0 0 9 7 6 0 7 7 6 0	1 1 01/00	111 001 000000

Elementi di Meccanica delle Vibrazioni (6 CFU) - Prova di teoria - 06.09.2016

Test n.1

Per il sistema in Fig. 1, nell'ipotesi che non vi sia strisciamento fra l'asta e la ruota, si chiede di:

- 1. scrivere l'equazione di moto utilizzando come coordinata la traslazione x del carrello;
- 2. calcolare la pulsazione propria e il fattore di smorzamento;
- 3. utilizzando le condizioni iniziali sotto riportate, calcolare il movimento della slitta in funzione del tempo quando la forzante esterna è nulla;
- 4. nell'ipotesi che la forza sul carrello sia variabile nel tempo con legge sinusoidale $F(t) = F_{max} \sin \Omega t$, determinare il moto a regime del sistema.

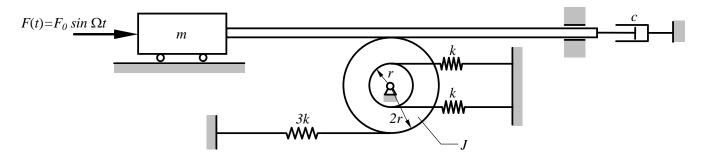


Figura 1

Dati

_	Dan	
•	• Massa traslante (asta + carrello)	$\dots \dots m = 20 \text{ kg}$
,	• Momento d'inerzia del corpo rotante	$\dots J = 0.6 \text{ kg m}^2$
,	• Rigidezza	$\dots k = 12 \text{ kN/m}$
,	• Costante di smorzamento	$\dots c = 500 \text{ Ns/m}$
,	• Raggio	$\dots r = 150 \text{ mm}$
,	• Forza massima	$\dots F_{max} = 250 \text{ N}$
,	• Pulsazione della forzante	$\dots \Omega = 20 \text{ rad/s}$
	• Condizioni iniziali	$\dot{x}(0) = 4 \text{ m/s}$

Per il sistema in Fig. 2 si chiede di:

- 1. scrivere le equazioni di moto e ricavare le matrici di massa J e di rigidezza K;
- 2. verificare che la matrice $\mathbf{\Delta} = \mathbf{K} \omega^2 \mathbf{J}$ assume la forma seguente:

$$\mathbf{\Delta} = \begin{bmatrix} \Delta_{11} & \Delta_{12} & 0 \\ \Delta_{12} & \Delta_{22} & \Delta_{23} \\ 0 & \Delta_{23} & \Delta_{33} \end{bmatrix}$$

3. determinare l'equazione caratteristica del sistema, utilizzando per il calcolo del determinante della matrice Δ la formula sotto riportata:

$$|\mathbf{\Delta}| = \Delta_{11}\Delta_{22}\Delta_{33} - \Delta_{33}\Delta_{12}^2 - \Delta_{11}\Delta_{23}^2$$

4. calcolare le pulsazioni proprie del sistema.

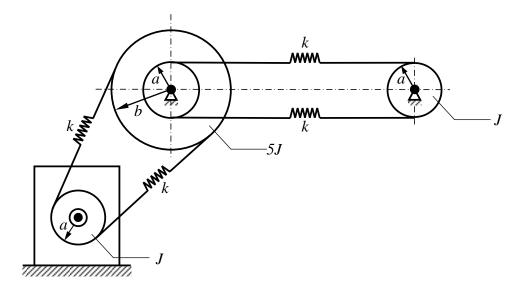
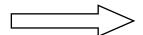


Figura 2

Dati

Seguono altre domande sul retro del foglio



Si consideri il sistema in Fig. 3 e si risponda alle seguenti domande:

- 1. scrivere l'equazione di moto (si utilizzi come coordinata libera la traslazione x della slitta);
- 2. determinare il valore della costante c in modo da ottenere la condizione di smorzamento critico;
- 3. supponendo che x(0) = 30 mm, determinare la velocità iniziale della slitta affinché il passaggio per la posizione di equlibrio x = 0 si abbia dopo 150 ms dall'inizio del movimento;
- 4. determinare l'espressione analitica della legge di moto x(t) della slitta e darne una rappresentazione grafica qualitativa.

Nota: Si supponga assenza di slittamento tra i corpi in movimento.

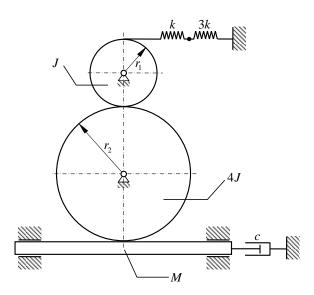


Figura 3

Dati

•	Massa
•	Momento d'inerzia
•	Rigidezza $k = 8000 \text{ N/m}$
•	• Raggi

Test n.4

Si ricavi la matrice modale del sistema in Fig. 4, ipotizzando assenza di slittamento tra i rulli e il terreno.

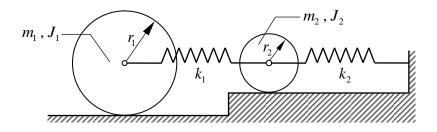


Figura 4

•	Masse $m_1 =$	$= 16 \text{ kg}$ $m_2 = 12 \text{ kg}$
•	Momenti d'inerzia	$J_2 = 0.12 \text{ kg m}^2$
•	Rigidezze $k_1 = 1500 \text{ N/}$	$k_2 = 4500 \text{ N/m}$
•	Raggi	$r_2 = 140 \text{ mm}$

Si considerino le vibrazioni a regime della macchina in Fig. 5 e si risponda alle seguenti domande:

- 1. scrivere le equazioni di moto utilizzando come coordinate la traslazione della slitta e la rotazione della leva;
- 2. calcolare la matrice di impedenza **Z**;
- 3. supponendo di far ruotare la manovella alla velocità angolare di 200 giri/min della, determinare le ampiezze di oscillazione della slitta e della leva nel moto a regime.

Nota: Si suppongano piccole oscillazioni della leva e assenza di slittamento tra i corpi in movimento.

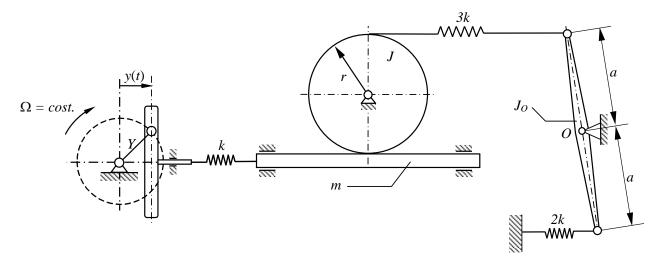


Figura 5

Dati

• Massa della slitta	$\dots \dots $
• Momento d'inerzia baricentrico della leva	
• Lunghezza dei bracci della leva	
• Momento d'inerzia baricentrico del disco	$\dots J = 0.1 \text{ kg m}^2$
• Raggio del disco	$r = 140 \text{ mm}$
• Rigidezza	$k = 1200 \text{ N/m}$
• Lunghezza della manovella	$\dots Y = 120 \text{ mm}$