Equivalent Masses, Springs and Dampers I

Equivalent masses

Mass (M) attached at end of spring of mass m

$$m_{eq} = M + \frac{m}{3}$$

Cantilever beam of mass m carrying an end mass M

$$m_{eq} = M + 33 m$$

Simply supported beam of mass m carrying a mass M at the middle

$$m_{eq} = M + \frac{11}{35} m$$

Coupled translational and rotational masses

$$m_{eq} = m + \frac{J_0}{R^2}$$

 $J_{eq} = J_0 + mR^2$

Masses on a hinged bar

$$m_{eq_1} = m_1 + \left(\frac{l_2}{l_1}\right)^2 m_2 + \left(\frac{l_3}{l_1}\right)^2 m_3$$

Equivalent springs

Rod under axial load (l = length, A = cross sectional area)

$$k_{eq} = \frac{EA}{l}$$

Tapered rod under axial load (D, d = end diameters)

$$r_{eq} = \frac{\pi E D d}{4l}$$

Helical spring under axial load

(d = wire diameter, D = mean coildiameter, n = number of active turns)

$$k_{eq} = \frac{Gd^4}{8nD^3}$$

Fixed-fixed beam with load at the middle $k_{eq} = \frac{192EI}{I^3}$

$$k_{eq} = \frac{192E}{l^3}$$

Cantilever beam with end load

$$k_{eq} = \frac{3EI}{I^3}$$

Simply supported beam with load at the middle

$$k_{eq} = \frac{48EI}{l^3}$$

Springs in series

$$\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2} + \dots + \frac{1}{k_n}$$

Springs in parallel

$$k_{eq} = k_1 + k_2 + \dots + k_n$$

Hollow shaft under torsion (1 = length, D = outer diameter,d = inner diameter)

$$k_{eq} = \frac{\pi G}{32l} (D^4 - d^4)$$

Relative motion between parallel surfaces (A = area of smaller plate)

$$c_{eq} = \frac{\mu A}{h}$$

Dashpot (axial motion of a piston in a cylinder)

Torsional damper

$$c_{eq} = \mu \frac{3\pi D^3 l}{4d^3} \left(1 + \frac{2d}{D} \right)$$

Dry friction (Coulomb damping) (fN = friction force, ω = frequency, X = amplitude of vibration)

 $c_{eq} = \frac{4fN}{\pi\omega X}$